
Contents: Spell.h

Full interface
SPCHK_CheckWord
SPCHK_Options
CHECKWORD
Messages

Quick interface
SPEDT_CheckEdit
SPEDT_SetupBox

Other information
Copyright

If you have any problems, want extra information or think you have found a bug you can
contact me at spellchk@quinion.demon.co.uk.   

You might also be interested in my home page which is kept up to date with latest
information on this project.    If there is sufficient interest a list server (either developer or
just user) will be setup.

SPCHK_CheckWord (Full interface)

#include spell.h

BOOL SPCHK_CheckWord(lpchkw)

LPCHECKWORD lpchkw /* address of initialisation data */

The SPCHK_CheckWord function performs spelling checking on the data supplied in lpcheckword.

Parameter Description

lpchkw Points to a CHECKWORD structure that contains information to perform a spelling
check. This structure will be passed to any callback functions.

Returns
The return is only valid if a single word is being checked. It is non zero if the word was found. It is
zero if the word was not found.

Errors
Error handling is limited to the point of non-existence. Errors will be trapped, but at the moment are
not passed back and instead a message is displayed to the user. Every attempt has been made to
make these message understandable.

Comments
The exact way that this function works depends on the content of the CHECKWORD structure.

See Also
SPCHK_Options, CHECKWORD

SPCHK_Options (Full interface)

#include spell.h

void SPCHK_Options(lpchkw)

LPCHECKWORD lpchkw /* address of initialisation data */

The SPCHK_Options function provides access to the options dialog box.

Parameter Description

lpchkw Points to a CHECKWORD structure that contains information to perform a spelling
check. This structure will be passed to any callback functions.

Returns
Nothing.

Errors
Error handling is limited to the point of non-existence. Errors will be trapped, but at the moment are
not passed back and instead a message is displayed to the user. Every attempt has been made to
make these message understandable.

See Also
SPCHK_CheckWord, CHECKWORD

CHECKWORD (Full interface)

#include spell.h

typedef struct {
WORD wSizeOfBlock;

HWND hWndParent,
hWndDlg;

WORD CheckWordOptions;
char szLanguage[13];
HGLOBAL hCustomDics;
BYTE NumCustom;
BYTE CurCustom;

HINSTANCE hInstance;
DLGPROC fpMainHook;
DLGPROC fpOptionsHook;
LPSTR lpMainDlg;
LPSTR lpOptionsDlg;

DWORD dwCustData;
DWORD dwCustData2;

char ToCheck[MAXSPELL];
char Changed[MAXSPELL];
BOOL bCurWordChanged;

BYTE Reserved[26+MAXSPELL];
} CHECKWORD, FAR * LPCHECKWORD;

The CHECKWORD structure contains information that the spellchk dll requires to check a
document.
Member Description
wSizeOfBlock Specifies the length of the structure in bytes. This member is filled on input.
hWndParent Identifies the window that owns the dialog box. This member must be a valid

window handle. This is the window that will receive notification and request
messages unless they are being sent to a hook (see later). This member is
filled on input.

hWndDlg Identifies the dialog window created. This member is filled on window creation.
CheckWordOptions Initialisation flags, a combination of the following values:

Value Meaning
CWO_ALLOWCHANGE

If a word is not found a dialog box will be display to ask what
to do.    If this flag is not specified then no box will be
displayed.

CWO_AUTOSUGGEST
When the spell dialog box is displayed the program will
automatically display a list of suggested words.    Is set on

input and output.
CWO_SUGGESTCUST

Look for suggestions in the custom dictionaries as well as the
main dictionary. Set on input and output.

CWO_NOOPTIONS
Hide the options box.

CWO_UNDO
Send UNDO information messages and UNDO requests.    If
this flag is not present then the undo button will be hidden.

CWO_NOHELP
Hide the help button.    If this message is not specified then
help requests will be sent.

CWO_USEMAINHOOK
Enables the hook function specified in the fpMainHook
member.

CWO_USEOPTIONSHOOK
Enables the hook function specified in the fpOptionsHook
member.

CWO_USECUSTOMMAINDLG
Causes the program to use the dialog box template identified
by the lpMainDlg member.

CWO_USECUSTOMOPTIONSDLG
Causes the program to use the dialog box template identified
by the lpOptionsDlg member.

CWO_SENDMSGTOMAINHOOK
Sends the following notification and request messages to the
hook function specified in the fpMainHook:

SPELL_GETNEXT
SPELL_WORDNOTFOUND
SPELL_WORDCHANGED
SPELL_CANUNDO
SPELL_STOREUNDO
SPELL_UNDOLAST
SPELL_HELPMAIN

Otherwise they are sent to hWndParent.
CWO_SENDMSGTOOPTIONSHOOK

Sends the following notification and request messages to the
hook function specified in the fpOptionsHook:

SPELL_GETCUSTOMDEFPATH
SPELL_HELPOPTIONS
SPELL_HELPEDITDIC

Otherwise they are sent to hWndParent.
CWO_CHECKMULTIPLE

The program will check a series of words obtained by sending
out SPELL_GETNEXT messages.    If this flag is not present then
only the word in ToCheck will be checked.

CWO_DONTUSEFULL
Do not check the main dictionary for words.    I can think of no
good reason for needing this, but it is here for completion.

szLanguage The file name of the main dictionary to use. If it is not specified then the first

available dictionary will be selected. This member is filled on input and output.
The only exception to this is if CWO_DONTUSEFULL has been specified.

hCustomDics Handle of a block of global memory containing a series of CUSTDIC structures,
or hCustomDics can be set to 0 if no custom dictionaries are needed. The
block of memory should be created with the GHND and GMEM_DDESHARE
flags.

NumCustom The number of custom dictionaries in the array to which hCustomDics is a
handle.

CurCustom Specified the currently selected index (into the array to which hCustomDics is
a handle) which words should be added to. It should be a number in the range
0 to NumCustom-1.

hInstance Identifies the hInstance of the program/dll which contains the dialog box
resources pointed to by. lpMainDlg and lpOptionsDlg.

fpMainHook Pointer to a hook function to handle message to the Main dialog box. Only
required if the CWO_USEMAINHOOK flag is specified.    The function may
also handle other message if the CWO_SENDMSGTOMAINHOOK flag is
specified.    See these two flags for details.

fpOptionsHook Pointer to a hook function to handle message to the Options dialog box. Only
required if the CWO_USEOPTIONSHOOK flag is specified.    The function
may also handle other message if the
CWO_SENDMSGTOOPTIONSHOOK flag is specified.    See these two
flags for details.

lpMainDlg Pointer to a null-terminated string that specifies the name of the resource to be
used in preference to the default dialog box. It must be present in the module
specified by hInstance.

lpOptionsDlg Pointer to a null-terminated string that specifies the name of the resource to be
used in preference to the default dialog box. It must be present in the module
specified by hInstance.

dwCustData Custom data for use by your program.
dwCustData2 Custom data for use by your program.
ToCheck A null-terminated string giving the word to be checked. It should be filled on

initialisation unless the CWO_CHECKMULTIPLE flag is specified in which case
it should be filled with the next word to check each time a SPELL_GETNEXT
message is received.

Changed If the word is changed by the use you program will be notified with a
SPELL_WORDCHANGED message.    The new word will be placed in
this buffer as a null-terminated string.

bCurWordChanged Is non zero if the current word has been changed.
Reserved Private data used by the program.

See Also
SPCHK_CheckWord, SPCHK_Options, CUSTDIC

CUSTDIC (Full interface)

#include spell.h

typedef struct {
char DicFile[MAXPATH];
char DicTitle[MAXDICTITLE];
BYTE Options;
BYTE Reserved[8];

} CUSTDIC, far * LPCUSTDIC;

The CUSTDIC structure contains information on a custom dictionary.
Member Description
DicFile Full file path and name of the custom dictionary.
DicTitle Title of the custom dictionary.
Options Initialisation flags, a combination of the following values:

Value Meaning
CD_READONLY

The dictionary is read-only. This flag is set on input and
output.

CD_DISABLED
The dictionary is disabled. This flag is set on input and
output.

CD_CHANGED
The custom dictionary has been changed.    This flag is set on
output.

Private Private data used by the program.

See Also
SPCHK_CheckWord, SPCHK_Options, CUSTDIC

Messages (Full interface)

SPELL_GETNEXT Ask for the next word
SPELL_WORDNOTFOUND Notify word not found
SPELL_WORDCHANGED Notify word changed
SPELL_CANUNDO Ask if undo available
SPELL_STOREUNDO Provide undo information
SPELL_UNDOLAST Execute undo
SPELL_GETCUSTOMDEFPATH Ask for the default custom dictionary path
SPELL_HELPMAIN User has requested help
SPELL_HELPOPTIONS User has requested help
SPELL_HELPEDITDIC User has requested help

SPELL_GETNEXT (Full interface)

SPELL_GETNEXT
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */
This message is sent to request the next word.    The application should respond by filling
the ToCheck member of the CHECKWORD structure.
Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns
An application should return non zero if ToCheck has been filled or 0 to finish.

Example
This example sends 5 words to be checked one at a time.

LPCHECKWORD lpchkw;
WORD wIndex;
char Words[6][15]={"thiss",
 "poeple",
 "aggrivation",
 "enviromental",
 "wheight",
 "nohting"};

case SPELL_GETNEXT:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;
 wIndex = (WORD) lpchkw->dwCustData;

 // Have we done all the words?
 if (wIndex>5)
 return FALSE;

 // Copy over the word
 lstrcpy(lpCheckWord->ToCheck, Words[wIndex]);

 // Position for the next
 lpchkw->dwCustData;
 return TRUE;

SPELL_WORDNOTFOUND (Full interface)

SPELL_WORDNOTFOUND
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */
This message is sent to inform the program that the word in ToCheck has not been
found.
Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns
An application should return 0.

Example
Display a notice if a word is not found.

LPCHECKWORD lpchkw;
char Text[100];

case SPELL_WORDNOTFOUND:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Display the word not found
 wsprintf(Text, "The word '%s' was not found", lpchkw->ToCheck);
 MessageBox(hDlg, Text, "Test Word", MB_ICONHAND);
 return 0;

See Also
SPELL_WORDCHANGED

SPELL_WORDCHANGED (Full interface)

SPELL_WORDNOTFOUND
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */
This message is sent to inform the program that the word in ToCheck sound be changed
to the word in Changed.
Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns
An application should return 0.

Example
Display a notice if a word is changed.

LPCHECKWORD lpchkw;
char Text[100];

case SPELL_WORDCHANGED:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Display the word to be changed
 wsprintf(Text, "The word '%s' should be changed to %s",
 lpchkw->ToCheck, lpchkw->Changed);
 MessageBox(hDlg, Text, "Test Word", MB_ICONHAND);
 return 0;

See Also
SPELL_WORDNOTFOUND

SPELL_CANUNDO (Full interface)

SPELL_CANUNDO
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */
This message is sent to ask the application if it can currently undo.
Parameter Description

lpchkw Points to a CHECKWORD structure.

Returns
An application should return non zero if it can undo, 0 if it can't.

Example
Return the undo status.

static BOOL bCanUndo;

case SPELL_CANUNDO:
 // Just return the bUndo flag
 return bCanUndo;

See Also
SPELL_STOREUNDO, SPELL_UNDOLAST

SPELL_STOREUNDO (Full interface)

SPELL_STOREUNDO
wParam = (HUNDO)hUndo; /* handle to undo data */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */
Inform the program that it should store an undo pointer.
Parameter Description

hUndo Handle to undo block (spellchk internal)
lpchkw Points to a CHECKWORD structure.

Returns
An application should return 0.

Example
Store the information needed to undo.

LPCHECKWORD lpchkw;
static BOOL bCanUndo;
static HUNDO hUndoHandle;
static WORD wUndoIndex;

case SPELL_STOREUNDO:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Yes we can now undo
 bCanUndo=TRUE;

 // Store the handle provided by spellchk
 hUndoHandle=(HUNDO)wParam;

 // Store the current word being checked
 wUndoIndex=lpchkw->dwCustData;
 return 0;

See Also
SPELL_CANUNDO, SPELL_UNDOLAST

SPELL_UNDOLAST (Full interface)

SPELL_UNDOLAST
wParam = 0; /* not used */
lParam = (LPCHECKWORD) lpchkw; /* address of initialisation data */
The application should undo the last change it made (as a result of a
SPELL_CHANGEWORD message) and reposition its pointers so that the next
SPELL_GETNEXT will return the undone word.
Parameter Description
lpchkw Points to a CHECKWORD structure.

Returns
An application should return non zero if it has repositioned for an undo else it should return 0.
The DWL_MSGRESULT of the spellchk dialog box should be set to the undo handle previously
supplied.

Example
LPCHECKWORD lpchkw;
static BOOL bCanUndo;
static HUNDO hUndoHandle;
static WORD wUndoIndex;

case SPELL_UNDOLAST:
 // Get the pointer
 lpchkw = (LPCHECKWORD)lParam;

 // Do the undo if we can - see the full example app for
 // more details
 if (bCanUndo)
 {
 // Reposition the index to restart at the pervious position
 lpchkw->dwCustData=wUndoIndex;

 // Store the undo handle in the dialog result register
 SetWindowLong(lpchkw->hWndDlg, DWL_MSGRESULT, hUndoHandle);

 // Since we have undone once we can't do it again
 bCanUndo=FALSE;

 // Return a positive answer
 return TRUE;
 }
 return FALSE;

See Also
SPELL_CANUNDO, SPELL_STOREUNDO

SPELL_GETCUSTOMDEFPATH (Full interface)

SPELL_GETCUSTOMDEFPATH
wParam = 0; /* not used */
lParam = (LPSTR) lppath; /* buffer for file path */
The application should copy the default file path for custom dictionaries into the buffer
pointed to by lParam.
Parameter Description
lppath Points to a string buffer.

Returns
An application should return non zero if it can supply a default directory, else it should return 0.

Example
Return a file path stored as a global string.

case SPELL_GETCUSTOMDEFPATH:
lstrcpy((LPSTR)lParam, g.szProgDir);
return TRUE;

SPELL_HELPMAIN (Full interface)

SPELL_HELPMAIN
The application should display help for the main window.

Parameters
This message has no parameters.

Returns
An application should return 0.

Example
Call winhelp.

case SPELL_HELPMAIN:
 WinHelp(hWnd, "spell.hlp", HELP_CONTEXT, HELP_SPELLMAIN);
 return 0;

SPELL_HELPOPTIONS (Full interface)

SPELL_HELPOPTIONS
The application should display help for the options window.

Parameters
This message has no parameters.

Returns
An application should return 0.

Example
Call winhelp.

case SPELL_HELPMAIN:
 WinHelp(hWnd, "spell.hlp", HELP_CONTEXT, HELP_SPELLOPTIONS);
 return 0;

SPELL_HELPEDITDIC (Full interface)

SPELL_HELPEDITDIC
The application should display help for the custom dictionary window.

Parameters
This message has no parameters.

Returns
An application should return 0.

Example
Call winhelp.

case SPELL_HELPMAIN:
 WinHelp(hWnd, "spell.hlp", HELP_CONTEXT, HELP_SPELLCUSTEDIT);
 return 0;

SPEDT_CheckEdit (Quick interface)

#include spell.h

BOOL SPEDT_CheckEdit(hwndEdit)

HWND hwndEdit /* window handle of the edit box to check */

The SPEDT_CheckEdit function checks a windows edit box (or compatible) for spelling.

Parameter Description

hwndEdit Identifies the edit box to be checked.

Returns
Returns non zero if successful, otherwise it will return 0.

Comments
To be compatible the edit box should respond to the following edit box messages:

EM_GETLINE
EM_GETLINECOUNT
EM_LINEFROMCHAR
EM_LINEINDEX
EM_LINELENGTH
EM_REPLACESEL
EM_SETSEL

And should be aware that the bitwise operator:
ES_MULTILINE

is checked for in the style of the control using GetWindowLong(hwndEdit, GWL_STYLE)

See Also
SPEDT_SetupBox

SPEDT_SetupBox (Quick interface)

#include spell.h

void SPEDT_SetupBox(hwndParent)

HWND hwndParent /* Parent window */

The SPEDT_SetupBox function displays the setup box.

Parameter Description

hwndParent Identifies the parent window of the setup box.

Returns
Nothing.

Comments
Because of the way this interface works options are displayed as if the setup program that
comes with spell200.zip has been run.    This merely provides an interface to run it from
within your own program.

See Also
SPEDT_CheckEdit

Copyright and disclaimer

Spell checker for edit boxes has been written by and is copyright © 1994 by Brian
Quinion. All rights reserved.
Whilst every care has been taken in the compilation of this application, it is provided 'as
is' and neither the author nor the publishers shall be held responsible for any error,
omission or consequential loss.
Spell Checker for Edit Boxes is freeware.

